3.6 \(\int \cot ^4(c+d x) (a+b \tan (c+d x)) (B \tan (c+d x)+C \tan ^2(c+d x)) \, dx\)

Optimal. Leaf size=66 \[ -\frac{(a C+b B) \cot (c+d x)}{d}-\frac{(a B-b C) \log (\sin (c+d x))}{d}-x (a C+b B)-\frac{a B \cot ^2(c+d x)}{2 d} \]

[Out]

-((b*B + a*C)*x) - ((b*B + a*C)*Cot[c + d*x])/d - (a*B*Cot[c + d*x]^2)/(2*d) - ((a*B - b*C)*Log[Sin[c + d*x]])
/d

________________________________________________________________________________________

Rubi [A]  time = 0.159387, antiderivative size = 66, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.132, Rules used = {3632, 3591, 3529, 3531, 3475} \[ -\frac{(a C+b B) \cot (c+d x)}{d}-\frac{(a B-b C) \log (\sin (c+d x))}{d}-x (a C+b B)-\frac{a B \cot ^2(c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^4*(a + b*Tan[c + d*x])*(B*Tan[c + d*x] + C*Tan[c + d*x]^2),x]

[Out]

-((b*B + a*C)*x) - ((b*B + a*C)*Cot[c + d*x])/d - (a*B*Cot[c + d*x]^2)/(2*d) - ((a*B - b*C)*Log[Sin[c + d*x]])
/d

Rule 3632

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Tan[e + f*x])
^(m + 1)*(c + d*Tan[e + f*x])^n*(b*B - a*C + b*C*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 3591

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((b*c - a*d)*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2
 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[a*A*c + b*B*c + A*b*d - a*B*d - (A*b*
c - a*B*c - a*A*d - b*B*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3531

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((a*c +
 b*d)*x)/(a^2 + b^2), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \cot ^4(c+d x) (a+b \tan (c+d x)) \left (B \tan (c+d x)+C \tan ^2(c+d x)\right ) \, dx &=\int \cot ^3(c+d x) (a+b \tan (c+d x)) (B+C \tan (c+d x)) \, dx\\ &=-\frac{a B \cot ^2(c+d x)}{2 d}+\int \cot ^2(c+d x) (b B+a C-(a B-b C) \tan (c+d x)) \, dx\\ &=-\frac{(b B+a C) \cot (c+d x)}{d}-\frac{a B \cot ^2(c+d x)}{2 d}+\int \cot (c+d x) (-a B+b C-(b B+a C) \tan (c+d x)) \, dx\\ &=-(b B+a C) x-\frac{(b B+a C) \cot (c+d x)}{d}-\frac{a B \cot ^2(c+d x)}{2 d}+(-a B+b C) \int \cot (c+d x) \, dx\\ &=-(b B+a C) x-\frac{(b B+a C) \cot (c+d x)}{d}-\frac{a B \cot ^2(c+d x)}{2 d}-\frac{(a B-b C) \log (\sin (c+d x))}{d}\\ \end{align*}

Mathematica [C]  time = 0.435101, size = 77, normalized size = 1.17 \[ -\frac{2 (a C+b B) \cot (c+d x) \text{Hypergeometric2F1}\left (-\frac{1}{2},1,\frac{1}{2},-\tan ^2(c+d x)\right )+2 (a B-b C) (\log (\tan (c+d x))+\log (\cos (c+d x)))+a B \cot ^2(c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^4*(a + b*Tan[c + d*x])*(B*Tan[c + d*x] + C*Tan[c + d*x]^2),x]

[Out]

-(a*B*Cot[c + d*x]^2 + 2*(b*B + a*C)*Cot[c + d*x]*Hypergeometric2F1[-1/2, 1, 1/2, -Tan[c + d*x]^2] + 2*(a*B -
b*C)*(Log[Cos[c + d*x]] + Log[Tan[c + d*x]]))/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.076, size = 96, normalized size = 1.5 \begin{align*} -Bxb-{\frac{B\cot \left ( dx+c \right ) b}{d}}-{\frac{Bbc}{d}}+{\frac{Cb\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-{\frac{aB \left ( \cot \left ( dx+c \right ) \right ) ^{2}}{2\,d}}-{\frac{aB\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-Cxa-{\frac{C\cot \left ( dx+c \right ) a}{d}}-{\frac{Cac}{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^4*(a+b*tan(d*x+c))*(B*tan(d*x+c)+C*tan(d*x+c)^2),x)

[Out]

-B*x*b-1/d*B*cot(d*x+c)*b-1/d*B*b*c+1/d*C*b*ln(sin(d*x+c))-1/2/d*a*B*cot(d*x+c)^2-1/d*a*B*ln(sin(d*x+c))-C*x*a
-1/d*C*cot(d*x+c)*a-1/d*C*a*c

________________________________________________________________________________________

Maxima [A]  time = 1.70778, size = 116, normalized size = 1.76 \begin{align*} -\frac{2 \,{\left (C a + B b\right )}{\left (d x + c\right )} -{\left (B a - C b\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) + 2 \,{\left (B a - C b\right )} \log \left (\tan \left (d x + c\right )\right ) + \frac{B a + 2 \,{\left (C a + B b\right )} \tan \left (d x + c\right )}{\tan \left (d x + c\right )^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^4*(a+b*tan(d*x+c))*(B*tan(d*x+c)+C*tan(d*x+c)^2),x, algorithm="maxima")

[Out]

-1/2*(2*(C*a + B*b)*(d*x + c) - (B*a - C*b)*log(tan(d*x + c)^2 + 1) + 2*(B*a - C*b)*log(tan(d*x + c)) + (B*a +
 2*(C*a + B*b)*tan(d*x + c))/tan(d*x + c)^2)/d

________________________________________________________________________________________

Fricas [A]  time = 1.39201, size = 234, normalized size = 3.55 \begin{align*} -\frac{{\left (B a - C b\right )} \log \left (\frac{\tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) \tan \left (d x + c\right )^{2} +{\left (2 \,{\left (C a + B b\right )} d x + B a\right )} \tan \left (d x + c\right )^{2} + B a + 2 \,{\left (C a + B b\right )} \tan \left (d x + c\right )}{2 \, d \tan \left (d x + c\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^4*(a+b*tan(d*x+c))*(B*tan(d*x+c)+C*tan(d*x+c)^2),x, algorithm="fricas")

[Out]

-1/2*((B*a - C*b)*log(tan(d*x + c)^2/(tan(d*x + c)^2 + 1))*tan(d*x + c)^2 + (2*(C*a + B*b)*d*x + B*a)*tan(d*x
+ c)^2 + B*a + 2*(C*a + B*b)*tan(d*x + c))/(d*tan(d*x + c)^2)

________________________________________________________________________________________

Sympy [A]  time = 14.0008, size = 143, normalized size = 2.17 \begin{align*} \begin{cases} \text{NaN} & \text{for}\: c = 0 \wedge d = 0 \\x \left (a + b \tan{\left (c \right )}\right ) \left (B \tan{\left (c \right )} + C \tan ^{2}{\left (c \right )}\right ) \cot ^{4}{\left (c \right )} & \text{for}\: d = 0 \\\text{NaN} & \text{for}\: c = - d x \\\frac{B a \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} - \frac{B a \log{\left (\tan{\left (c + d x \right )} \right )}}{d} - \frac{B a}{2 d \tan ^{2}{\left (c + d x \right )}} - B b x - \frac{B b}{d \tan{\left (c + d x \right )}} - C a x - \frac{C a}{d \tan{\left (c + d x \right )}} - \frac{C b \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac{C b \log{\left (\tan{\left (c + d x \right )} \right )}}{d} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**4*(a+b*tan(d*x+c))*(B*tan(d*x+c)+C*tan(d*x+c)**2),x)

[Out]

Piecewise((nan, Eq(c, 0) & Eq(d, 0)), (x*(a + b*tan(c))*(B*tan(c) + C*tan(c)**2)*cot(c)**4, Eq(d, 0)), (nan, E
q(c, -d*x)), (B*a*log(tan(c + d*x)**2 + 1)/(2*d) - B*a*log(tan(c + d*x))/d - B*a/(2*d*tan(c + d*x)**2) - B*b*x
 - B*b/(d*tan(c + d*x)) - C*a*x - C*a/(d*tan(c + d*x)) - C*b*log(tan(c + d*x)**2 + 1)/(2*d) + C*b*log(tan(c +
d*x))/d, True))

________________________________________________________________________________________

Giac [B]  time = 1.55907, size = 242, normalized size = 3.67 \begin{align*} -\frac{B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 4 \, C a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 4 \, B b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 8 \,{\left (C a + B b\right )}{\left (d x + c\right )} - 8 \,{\left (B a - C b\right )} \log \left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right ) + 8 \,{\left (B a - C b\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) - \frac{12 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 12 \, C b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 4 \, C a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 4 \, B b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - B a}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^4*(a+b*tan(d*x+c))*(B*tan(d*x+c)+C*tan(d*x+c)^2),x, algorithm="giac")

[Out]

-1/8*(B*a*tan(1/2*d*x + 1/2*c)^2 - 4*C*a*tan(1/2*d*x + 1/2*c) - 4*B*b*tan(1/2*d*x + 1/2*c) + 8*(C*a + B*b)*(d*
x + c) - 8*(B*a - C*b)*log(tan(1/2*d*x + 1/2*c)^2 + 1) + 8*(B*a - C*b)*log(abs(tan(1/2*d*x + 1/2*c))) - (12*B*
a*tan(1/2*d*x + 1/2*c)^2 - 12*C*b*tan(1/2*d*x + 1/2*c)^2 - 4*C*a*tan(1/2*d*x + 1/2*c) - 4*B*b*tan(1/2*d*x + 1/
2*c) - B*a)/tan(1/2*d*x + 1/2*c)^2)/d